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The Nem1-Spo7 complex in the yeast Saccharomyces cerevi-
siae is a protein phosphatase that catalyzes the dephosphory-
lation of Pah1 phosphatidate phosphatase, required for its
translocation to the nuclear/endoplasmic reticulummembrane.
The Nem1–Spo7/Pah1 phosphatase cascade plays a major role
in triacylglycerol synthesis and in the regulation of phospho-
lipid synthesis. In this work, we examined Spo7, a regulatory
subunit required for Nem1 catalytic function, to identify resi-
dues that govern formation of theNem1-Spo7 complex. By dele-
tion analysis of Spo7, we identified a hydrophobic Leu-Leu-Ile
(LLI) sequence comprising residues 54–56 as being required for
the protein to complement the temperature-sensitive pheno-
type of an spo7D mutant strain. Mutational analysis of the LLI
sequence with alanine and arginine substitutions showed that
its overall hydrophobicity is crucial for the formation of the
Nem1-Spo7 complex as well as for the Nem1 catalytic function
on its substrate, Pah1, in vivo. Consistent with the role of the
Nem1–Spo7 complex in activating the function of Pah1, we
found that themutational effects of the Spo7 LLI sequence were
on the Nem1–Spo7/Pah1 axis that controls lipid synthesis and
related cellular processes (e.g. triacylglycerol/phospholipid syn-
thesis, lipid droplet formation, nuclear/endoplasmic reticulum
membrane morphology, vacuole fusion, and growth on glycerol
medium). These findings advance the understanding of Nem1-
Spo7 complex formation and its role in the phosphatase cascade
that regulates the function of Pah1 phosphatidate phosphatase.

In the model eukaryote Saccharomyces cerevisiae (in this pa-
per, “yeast” is used interchangeably with Saccharomyces cerevi-
siae), the lipid intermediate phosphatidic acid (PA) is used for
the synthesis of phospholipids and the neutral lipid triacylglyc-
erol (TAG) (1–4) (Fig. 1). The bifurcation of PA to these lipids
is governed by the demands of cell growth and metabolism
(1–4). For example, PA is primarily metabolized into phospho-
lipids via CDP-diacylglycerol (CDP-DAG) (1–4) during loga-
rithmic growth when phospholipids are needed for membrane
synthesis, metabolic processe, and cellular signaling (Fig. 1).
However, as cells progress into stasis (e.g. stationary phase), PA
is primarily metabolized into TAG via diacylglycerol (DAG)
(1–4). (Mutants defective in the CDP-DAG-dependent synthe-
sis of phosphatidylcholine and/or phosphatidylethanolamine
may synthesize these phospholipids from DAG via the CDP-
choline and/or CDP-ethanolamine branches of the Kennedy

pathway when supplemented with choline and/or ethanola-
mine [5–7].) This metabolic switch is largely controlled by the
Nem1-Spo7/Pah1 phosphatase cascade (1–4, 8, 9) (Fig. 1).
Pah1 has the molecular function of PA phosphatase (10),

which produces DAG by the dephosphorylation of PA (11, 12)
(Fig. 1). The enzyme is a phosphoprotein in the cytosol, with its
phosphorylation catalyzed by multiple protein kinases (13–18)
on at least 40 serine/threonine residues (19–30) (Fig. 2). Over-
all, the phosphorylation of Pah1 causes its localization in the
cytosol and prevents its access to the endoplasmic reticulum
(ER) membrane-associated substrate PA, and has the effect of
reducing its catalytic activity (13–16, 20). The ER membrane-
resident protein phosphatase complex (31), consisting of Nem1
(catalytic subunit) and Spo7 (regulatory subunit), recruits and
dephosphorylates Pah1 at the membrane surface and stimu-
lates its PA phosphatase activity (20, 32–34) (Fig. 1). Compared
with unphosphorylated/dephosphorylated Pah1, its phosphor-
ylated form is more stable against degradation by the 20S pro-
teasome (35, 36), except that it becomes more sensitive to the
proteasomal degradation upon phosphorylation by protein ki-
nase C (16). Like its substrate, Pah1, the Nem1-Spo7 phospha-
tase complex is regulated by phosphorylation (30, 37–41) (Fig.
2). For example, its phosphorylation by protein kinases A (40)
and C (41) affects the function of the Nem1-Spo7/Pah1 axis for
the decrease and increase, respectively, of TAG synthesis.
The activities of Pah1 PA phosphatase (10, 42) and Nem1

protein phosphatase (31, 43) are both dependent on the halo-
acid dehalogenase (HAD)-like domain with the DXDX(T/V)
catalytic motif (Fig. 2). For Pah1, in addition to the catalytic do-
main, its N-LIP domain is also important for PA phosphatase
activity (42). Pah1 is a peripheral membrane protein that trans-
locates to the ER membrane via its dephosphorylation by the
Nem1-Spo7 complex. For Pah1 translocation, its acidic tail at
the C terminus is required to interact with the Nem1-Spo7
phosphatase complex (33), whereas its amphipathic helix at the
N terminus is crucial to associate with the membrane surface
(32). The tryptophan residue of Pah1 in the conserved sequence
WRDPLVDID is essential for its in vivo function but is not
required for catalytic activity (44). Nem1 and Spo7, which form
a protein phosphatase complex, are integral membrane pro-
teins, both of which contain two transmembrane domains (31).
The complex formation of Nem1 with Spo7 occurs through its
C-terminal conserved domain (31). The interaction of Spo7
with Pah1 (38) facilitates the formation of an enzyme-substrate
complex between Nem1 and Pah1 (33).*For correspondence: George M. Carman, gcarman@rutgers.edu.

J. Biol. Chem. (2020) 295(33) 11473–11485 11473
© 2020 Mirheydari et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

ARTICLE

 by G
eorge C

arm
an on A

ugust 16, 2020
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

https://orcid.org/0000-0002-8170-854X
https://orcid.org/0000-0002-8170-854X
https://orcid.org/0000-0003-4951-8233
https://orcid.org/0000-0003-4951-8233
mailto:gcarman@rutgers.edu
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.RA120.014129&domain=pdf&date_stamp=2020-6-11
http://www.jbc.org/


In the present work, we examined the structural requirement
of Spo7 in regulating the function of the Nem1-Spo7/Pah1
phosphatase cascade. Deletion analysis of Spo7 indicated that
its amino acid region 46–65 is required for Nem1-Spo7/Pah1
axis function, and the N-terminal region contains the hydro-
phobic sequence Leu-Leu-Ile (LLI) (residues 54–56), conserved
in fungi. Mutational analysis showed that the overall hydropho-
bicity of the LLI sequence is required for the complex forma-
tion of Spo7 with Nem1, and its defect causes a significant loss
of the phosphatase complex-controlled Pah1 function (e.g.
TAG synthesis and lipid droplet formation, the nuclear/ER
membrane morphology, vacuole fusion, and growth at elevated
temperature and on glycerol as a carbon source).

Results

Identification of Spo7 LLI sequence as a functional
requirement

To assess the structural requirement of Spo7 for its function,
wemutated the 59 coding region of SPO7 to produce the nested
deletions of the protein from the N terminus (Table 1). The
mutant alleles of SPO7 on a low-copy-number plasmid were
transformed into the spo7Dmutant and evaluated for their abil-
ity to complement the mutant phenotypes. Loss of Spo7, like
that of Pah1 or Nem1, renders cells defective in growth at 37 °C

(Fig. 3) (10, 31, 43, 45). Accordingly, we first examined whether
the N-terminally truncated forms of Spo7 complement the
growth defect of the spo7Dmutant (Fig. 3). Like the full-length
Spo7, its truncation forms Spo7D(2–25) and Spo7D(2–45)
complemented the spo7D temperature-sensitive phenotype.
However, the expression of Spo7D(2–65) did not complement
the mutant phenotype. These results indicate that the loss of
Spo7 function is caused by the lack of its sequence consisting of
amino acids 46 to 65. A protein Blast analysis of the Spo7
sequence revealed the amino acid stretches that are conserved
in fungi. We focused on one stretch, namely, LLI (residues 54–
56), with the notion that hydrophobic interactions (46) govern
the formation of the Nem1-Spo7 phosphatase complex. To
examine this possibility, we constructed the SPO7 allele whose
product lacks only the LLI sequence. The expression of the
LLI-deficient Spo7, Spo7D(54–56), did not complement the
spo7D temperature-sensitive phenotype (Fig. 3), showing that
the hydrophobic sequence is required for Spo7 function.
We next examined the importance of the hydrophobicity of

the LLI sequence by mutating each individual amino acid to ala-
nine and arginine. The alanine substitution conserves the hydro-
phobic property of the leucine and isoleucine residues, whereas
the arginine substitution introduces the hydrophilic property
instead. The expression of the alanine-substituted forms (i.e.
L54A, L55A, and I54A) of Spo7 complemented the spo7D tem-
perature-sensitive phenotype (Fig. 3). In contrast, the arginine-
substituted forms did not complement (L54R and L55R) orweakly
complemented (I56R) the spo7D temperature sensitivity (Fig. 3).
These results indicate that the hydrophobic property of the LLI
sequence is important for Spo7 function, and that the hydrophobic
requirement ismore stringent for the leucine residues.

Spo7 LLI sequence interacts with Nem1

Spo7 functions as a regulatory subunit of the Nem1-Spo7
phosphatase complex (31, 43). To address the hypothesis
that the LLI sequence is required for the protein–protein
interaction of Spo7 and Nem1, we examined the mutational
effects of the hydrophobic sequence on Nem1-Spo7 com-
plex formation. In this analysis, the isolation of the phospha-
tase complex and its immunodetection were facilitated by
using the protein A-tagged Nem1 and the Myc-tagged Spo7
(20, 31, 34, 40), which are functional to complement the
spo7D phenotypes (e.g. temperature sensitivity and growth
defect on glycerol medium).
The presence of Nem1-PtA in the isolated complex could be

determined by immunoblot analysis with anti-protein A or
anti-Nem1 antibody. However, anti-protein A antibody was
more robust in signal detection; thus, it was used in this analy-
sis. The cross-reactivity of anti-Spo7 antibody with proteins
whose electrophoretic mobility overlaps that of untagged Spo7
interfered with the detection of the Spo7-specific signal. To cir-
cumvent this problem, we utilized the Myc-tagged version of
Spo7 (31) that exhibits slower electrophoretic mobility for clear
analysis with anti-Spo7 antibody. Although anti-Myc antibody
detected Spo7-Myc, its signal was not as robust as that detected
with anti-Spo7 antibody. Nem1 and Spo7 are very-low-abun-
dance proteins (47), and their detection from cell extracts was

Figure 1. Model for Pah1 localization and stability regulated by phos-
phorylation and dephosphorylation and for its role in lipid synthesis.
The expression of PAH1 is regulated during growth by nutrient status as
mediated by the Opi1/Ino2-Ino4 (Henry) regulatory circuit and transcription
factors Gis1, Rph1, and Zap1 (48, 109). Pah1 is phosphorylated (small white
circles) by multiple protein kinases in the cytosol and translocates to the nu-
clear/ER membrane through its dephosphorylation by the Nem1-Spo7 com-
plex (31, 32). Dephosphorylated Pah1 that is associated with the nuclear/ER
membrane via its amphipathic helix (32) catalyzes the conversion of PA to
DAG (10), which is converted to TAG for storage in lipid droplets (LDs). The
DAG is also used for the synthesis of phosphatidylcholine or phosphatidyle-
thanolamine via the Kennedy pathway when cells are supplemented with
choline or ethanolamine (7, 110). Unphosphorylated/dephosphorylated
Pah1 or protein kinase C (PKC)-phosphorylated Pah1 (16) is degraded by the
20S proteasome (indicated by the dashed-line arrows) (36).

Spo7 sequence LLI is required for Nem1-Spo7/Pah1 function
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untenable by immunoblotting with available antibodies. Thus,
the typical input (i.e. cell extract) control was not applicable to
the Nem1–Spo7 interaction data presented here.
Nem1-PtA was affinity purified with IgG-Sepharose from

the extracts of NEM1-PtA spo7D cells expressing Spo7-Myc,
and its level was determined by immunoblot analysis with anti-
protein A antibody (Fig. 4A). In addition, Spo7-Myc copuri-
fied with Nem1-PtA was detected by immunoblot analysis
with anti-Spo7 antibody (Fig. 4A). The quantification of
Spo7-Myc showed that the amounts of the alanine-substi-
tuted forms (i.e. L54A, L55A, and I56A) were similar to
that of the WT protein (Fig. 4B). However, the levels of the
arginine-substituted forms L54R, L55R, and I56R were
greatly reduced by 93, 85, and 63%, respectively. This result
suggested that the hydrophobicity of the LLI sequence is
crucial for Spo7 to form a complex with Nem1. However,
we cannot rule out the possibility that the arginine muta-
tions caused reduced stability of the Spo7 protein.
For Nem1-PtA, its cellular levels were shown to correlate

with the levels of copurified Spo7-Myc (Fig. 4B). Unlike the
alanine-substituted forms (i.e. L54A, L55A, and I56A) of
Spo7, its arginine-substituted forms, L54R, L55R, and I56R,
had the effect of reducing the Nem1-PtA level by 78%, 80%,
and 44%, respectively. Considering that the Nem1-PtA level is
reduced by 85% in the cell lacking Spo7-Myc expression (i.e.
vector control), this result raises the suggestion that Nem1 is
unstable when it cannot form a complex with Spo7.

Spo7 LLI sequence is required for the Nem1 catalytic activity

The Nem1-Spo7 phosphatase complex catalyzes the dephos-
phorylation of native Pah1, which is shown by a small increase

in its electrophoretic mobility in SDS-PAGE (13, 14, 20). In
contrast, the phosphorylation of Pah1 at Ser-723, Ser-744, and
Ser-748 by the Pho85-Pho80 protein kinase is shown by a small
decrease in its migration in the polyacrylamide gel (13, 14, 20).
The Pho85-Pho80-mediated phosphorylation in the cell is
required to ensure that the localization of Pah1 to the mem-
brane depends on its dephosphorylation by the Nem1-Spo7
phosphatase (20). Accordingly, we examined the Nem1-Spo7
phosphatase activity in vivo on the substrate Pah1 using
its phosphorylation state, which is reflected by differential elec-
trophoretic mobility (Fig. 5). Compared with the expression of
Spo7 (i.e.WT), the lack of its expression (i.e. vector) resulted in
the production of the slower-migrating form of Pah1 concomi-
tant with the lack of its faster-migrating form, indicating that
the Nem1-Spo7 phosphatase activity is required to dephospho-
rylate native Pah1.
The differential electrophoretic mobility of Pah1 was also

shown from spo7D cells expressing the alanine- and arginine-
substituted forms of Spo7 (Fig. 5). The faster-migrating form of
Pah1 was shown from the expression of the L54A form, similar
to the expression of WT Spo7. In contrast, the slower-migrat-
ing form of Pah1 was shown from the expression of the L54R
form, similar to the lack of WT Spo7. Compared with the L54A
form of Spo7, the L55A and I56A forms showed a less clear effect
on producing the faster-migrating form of Pah1. However, the
electrophoretic mobilities of Pah1 from the expression of L55A
and I56A were shown to be faster than those from the expression
of L55R and I56R. The L55R and I56R forms were similar to the
L54R form in producing the slower-migrating form of Pah1.
The relative amounts of Pah1 from cells expressing the

L54A, L54R, L55A, L55R, I56A, and I56R Spo7 mutant

Figure 2. Schematic diagrams for the domains/regions and phosphorylation sites of Pah1, Nem1, and Spo7. The diagram of Pah1 denotes the positions
of the amphipathic helix (AH) required for membrane interaction (32), the N-LIP and HAD-like domains required for PA phosphatase activity (42), the tryptophan
(W) residue within the C-terminal conserved sequence, WRDPLVDID, required for function in vivo (44), and the acidic tail (AT) required for interaction with the
Nem1-Spo7 complex (33). The serine (S) and threonine (T) residues known to be phosphorylated (19–30) are grouped at their approximate positions and marked
for the responsible protein kinases, including casein kinase I (18), casein kinase II (17), Cdc28-cyclin B (13), Pho85-Pho80 (11), protein kinase A (15), and protein ki-
nase C (16). For Nem1, the diagram denotes the HAD-like domain required for protein phosphatase activity and the C-terminal region required for interaction with
Spo7 (31). For Spo7, the diagram shows the conserved regions (CR) 1, 2, and 3 (yellow) and the LLI sequence (green) within CR1 required for interaction with Nem1
(this work). The transmembrane (TM) regions of Nem1 and Spo7 (31) and the serine residues phosphorylated by protein kinase A (40) or protein kinase C (41) are
also indicated.

Spo7 sequence LLI is required for Nem1-Spo7/Pah1 function
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proteins were 92, 100, 87, 91, 99, and 100%, respectively,
compared with that of cells expressing WT Spo7 (Fig. 5B).
Thus, the Spo7 LLI mutations do not majorly affect the
amounts of Pah1.

Mutational effects of Spo7 LLI on the Nem1-Spo7/Pah1
function

Yeast cells deficient in Pah1, Nem1, or Spo7 exhibit a variety
of phenotypes, all of which are caused by the lack of Pah1 PA
phosphatase activity in producing DAG (4). The most notable
phenotypes of the mutants include a great reduction in TAG
synthesis (Fig. 6) (10, 48) and lipid droplet formation (Fig. 7A)
(49, 50), the aberrant expansion of the nuclear/ER membrane
(Fig. 8A) (31, 42, 43), defective vacuole fusion (Fig. 9A) (51–53),
and growth defect at elevated temperature (Fig. 3) (10, 43, 45)
and on glycerol as a sole carbon source (Fig. 10A) (10, 42).
Some of these phenotypes (e.g. aberrant nuclear/ER morphol-
ogy or defective vacuole fusion) are less pronounced in the
spo7D mutant than in the pah1Dmutant (Figs. 8A and 9A) but
strong enough to evaluate the mutational effects of the LLI
sequence on cell physiology.

Effect on lipid content

Spo7 is required for the Nem1 catalytic activity, which in
turn regulates the Pah1 function to produce DAG for TAG syn-
thesis (10, 20, 32–34, 43, 48). Accordingly, we examined the
effect of the site-specific mutations of the LLI sequence on lipid
contents (Fig. 6). Lipids were analyzed from the [2-14C]acetate-
labeled cells at the stationary phase of growth, when Pah1 PA

phosphatase activity is highest (10, 48, 50). Lack of Spo7 (i.e.
vector control) caused a 92% decrease in the amount of TAG
but a 96% increase in the amount of phospholipids. The altered
lipid levels of spo7D cells were not restored by expressing the
arginine-substituted forms (i.e. L54R, L55R, and I56R) of Spo7.
However, the expression of the alanine-substituted forms L54A
and L55A restored the altered lipid levels caused by the spo7D
mutation. Interestingly, the I56A form of Spo7, which comple-
mented the spo7D temperature-sensitive phenotype, showed a
modest increase in the TAG level without restoring the phos-
pholipid level. The differential effects shown by the I56A form
supports the notion that a lower level of Pah1 PAP activity is
sufficient to support cell growth at elevated temperature (44).

Effect on lipid droplet formation

Pah1 produces DAG that is acylated to TAG (10), which is
then stored in lipid droplets (49). Since the Pah1-controlled
production of TAG affects lipid droplet formation, we exam-
ined the mutational effects of the LLI sequence on the quantity
of cellular lipid droplets (Fig. 7B). The spo7D cells expressing
WT Spo7 contained an average of 9 lipid droplets in the sta-
tionary phase of growth, whereas the mutant cells lacking its
expression showed a reduction of the lipid droplet number of
62%. Compared with the effect of theWT control, the arginine-
substituted forms (i.e. L54R, L55R, and L56R) of Spo7 did not
significantly increase the lipid droplet number of the spo7D
cells. In contrast, the expression of the alanine-substituted
forms L54A and L55A restored the lipid droplet number to
80% of the WT control. Similar to its effect on the TAG level,

Table 1
Strains and plasmids used in this work

Strain or plasmid Genotype or relevant characteristics Source or reference

Strains
E. coliDH5a F2 w80dlacZDM15D (lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rk

2mk
1)

phoA supE44 l2thi-1 gyrA96 relA1
95

S. cerevisiae
RS453 MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-52 93
Mutant derivatives
GHY67 spo7D::URA3 40
GHY68 NEM1-PtA spo7D::URA3 40
SS1002 nem1D::HIS3 31
SS1026 pah1D::TRP1 43

Plasmids
pRS415 Single-copy E. coli/yeast shuttle vector with LEU2 92
pGH443 SPO7 inserted into pRS415 40
pGH443-D(2–25) SPO7 lacking residues 2–25 This study
pGH443-D(2–45) SPO7 lacking residues 2–45 This study
pGH443-D(2–65) SPO7 lacking residues 2–65 This study
pGH443-D(54–56) SPO7 lacking residues 54–56 This study
pGH443-L54A SPO7 with the L54A mutation This study
pGH443-L54R SPO7 with the L54R mutation This study
pGH443-L55A SPO7 with the L55A mutation This study
pGH443-L55R SPO7 with the L54R mutation This study
pGH443-I56A SPO7 with the I56A mutation This study
pGH443-I56R SPO7 with the I56R mutation This study
pRS314-SPO7-Myc SPO7-Myc inserted into pRS314 31
pGH447 BamH1 site inserted before stop codon of SPO7 in pGH443 This study
pGH448 3xMyc tag inserted into SPO7 in pGH447 This study
pGH448-L54A SPO7-Myc with the L54A mutation This study
pGH448-L54R SPO7-Myc with the L54R mutation This study
pGH448-L55A SPO7-Myc with the L55A mutation This study
pGH448-L55R SPO7-Myc with the L54R mutation This study
pGH448-I56A SPO7-Myc with the I56A mutation This study
pGH448-I56R SPO7-Myc with the I56R mutation This study
YCplac33-S.E.C63-GFP SEC63-GFP fusion inserted into the CEN/URA3 vector 93
pGH449 SEC63-GFP fusion inserted into the pRS413 CEN/HIS3 vector This study

Spo7 sequence LLI is required for Nem1-Spo7/Pah1 function
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the I56A form showed a modest increase in the lipid droplet
number to 58% of theWT control.

Effect on nuclear/ER morphology

The lack of Spo7, Nem1, or Pah1 in the cell is characterized
by an irregularly shaped nucleus with the expansion of the nu-
clear/ER membrane (Fig. 8A) (31, 42, 43). This phenotype is
attributed to the increased synthesis of membrane phospholi-
pids as caused by the defect of the Nem1-Spo7/Pah1 phospha-
tase cascade (4, 9, 10, 43, 48, 54). Accordingly, we examined the
mutational effects of the LLI sequence on the nuclear/ER mor-
phology of the cell by the expression of the ER marker Sec63-
GFP (Fig. 8B). On average, about 60% of spo7D cells exhibited
aberrant nuclear/ER morphology compared with only 3.5% of
WT cells. The expression of the alanine-substituted forms of
Spo7 significantly reduced the aberrant nuclear/ER morphol-
ogy of spo7D cells (14–22%), whereas the expression of the argi-
nine-substituted forms had weaker effects on suppressing the
mutant phenotype (37–42%).

Effect on vacuole fusion

A phenotype characteristic of the cell lacking Pah1, Nem1, or
Spo7 is the appearance of fragmented vacuoles that fail to fuse
upon nutrient limitation (Fig. 9A) (51, 53). Thus, we examined
the effects of the site-specific mutations of the LLI sequence
on the vacuole morphology of the cell by staining with FM 4-64.
The defect of vacuole fusion was less pronounced in the spo7D
mutant than in the pah1D or nem1D mutant (Fig. 9A, lower). As
shown in Fig. 9B, about 18% of spo7D cells possessed fragmented
vacuoles compared with 2.5% of the mutant cells expressing WT
Spo7. The expression of the alanine-substituted forms of Spo7

restored the defective vacuole fusion of spo7D cells to a level simi-
lar to that of the cells expressing theWT protein. In contrast, the
expression of the arginine-substituted forms had little effect on
restoring the defective vacuole fusion of spo7D cells (L54R, 15%;
L55R, 15%; I56R, 12%).

Effect on growth with glycerol as the carbon source

Cells lacking Pah1 or Nem1 exhibited a growth defect when
glycerol was substituted for glucose as a sole carbon source
(Fig. 10A) (42, 45, 55). Because the Nem1-Spo7 complex regu-
lates Pah1 function, we examined whether spo7D mutant cells
utilize glycerol as a carbon source. The spo7D cells exhibited a
subtle loss-of-growth phenotype when grown on the glycerol-
containing medium; this phenotype was complemented by the
expression of WT Spo7 (Fig. 10B). The alanine-substituted
forms (i.e. L54A, L55A, and I56A) of Spo7 also complemented
the growth defect of spo7D cells on glycerol medium. However,
the arginine-substituted forms (i.e. L54R, L55R, and I56R) did
not complement the spo7D defect in glycerol utilization.

Figure 4. Nem1-Spo7 complex formation of spo7D cells expressing
Spo7with LLImutations. A, the spo7Dmutant (GHY68), which harbors chro-
mosomal NEM1-PtA, was transformedwith pGH448 and its derivatives for the
expression of the WT and mutant forms of Spo7-Myc. The yeast transform-
ants were grown at 30 °C in SC-Leu medium to the late logarithmic phase,
and cell extracts were prepared. The cell extracts were adjusted to a protein
concentration of 2.5 mg/ml and incubated with IgG-Sepharose. The affinity
resins were precipitated, washed, and treated with the Laemmli sample
buffer. After centrifugation, the affinity-purified proteins in the supernatant
were resolved by SDS-PAGE and transferred to a PVDFmembrane. Themem-
brane was cut at the 50-kDa position, and the upper portion was probed
with anti-protein A antibody, whereas the lower portion was probed with
anti-Spo7 antibody. The positions of Nem1-PtA, Spo7-Myc, and molecular
mass standards are indicated. B, the signals of Nem1-PtA and Spo7-Myc in
panel Awere quantified by ImageQuant software. The levels of mutant Spo7-
Myc were normalized to the level (set at 100%) of the WT protein; the levels
of Nem1-PtA from the transformant cells expressing mutant Spo7-Myc were
normalized to the protein level (set at 100%) from those expressing the WT
protein. The density of a background region on the blot was subtracted from
the density of the protein band of interest. The immunoblots in panel A are
representative of three separate experiments, whereas the data in panel B
are averages from the three experiments 6 S.D. (error bars). The individual
data points are also shown. *, p , 0.05 versus Nem1-PtA of cells expressing
WT Spo7-Myc. #, p, 0.05 versus Spo7-Myc of cells expressingWT Spo7-Myc.

Figure 3. Identification of Spo7 LLI sequence as required for the Nem1-
Spo7 function. The spo7D (GHY68) transformants expressing the indicated
SPO7 alleles (pGH443 and its derivatives) were grown to saturation at 30 °C in
SC-Leu medium. The cultures were adjusted to an A600 of 0.7, serially diluted
(10-fold), and spotted onto SC-Leu agar plates. The growth of the transform-
ant cells on solid medium was scored after 3 days of incubation at 30 and
37 °C. The data are representative of three independent experiments. The
position of the amino acid residues from full-length Spo7 is shown (top left).

Spo7 sequence LLI is required for Nem1-Spo7/Pah1 function
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Discussion

SPO7, which was originally identified as a gene involved in
meiosis and sporulation (56), was shown to encode a protein

required to maintain a spherical nuclear morphology (31). The
role of Spo7 in sporulation is unclear, but its role in the nuclear
morphology is based on the formation of a protein phosphatase
complex with Nem1 to regulate Pah1 PA phosphatase (20, 43).
The dephosphorylation of Pah1 by the Nem1-Spo7 phospha-
tase at the nuclear/ER membrane (20, 32, 33) facilitates its
membrane localization for catalytic activity on PA to produce
DAG that is acylated to TAG (Fig. 1) (48). The storage lipid
TAG is a reservoir for energy production as well as for growth
resumption from stasis, and its synthesis protects cells against
fatty acid-induced toxicity (50, 57–63). TAG production also
has the effect of controlling the level of PA that is used for the
de novo synthesis of membrane phospholipids. Accordingly,
the disruption of the Nem1-Spo7/Pah1 phosphatase cascade by
Spo7 deficiency causes the accumulation of PA that is exclu-
sively converted to membrane phospholipids. The elevated
level of PA also upregulates the production of phospholipid
synthesis enzymes at the transcriptional level through the dere-
pression of enzyme gene expression (10, 43, 48, 50, 54, 64).
These changes lead to a massive increase in the level of phos-
pholipids at the nuclear/ER membrane, causing the organelle
membrane to be irregularly expanded. The lack of the Spo7-
mediated control of the Nem1-Spo7/Pah1 phosphatase cascade
also causes defects in other cellular processes (e.g. lipid droplet
formation, vacuole fusion, and growth at elevated temperature
and on glycerol medium) that are dependent on the regulatory
function of PA and/or DAG.
In the Nem1-Spo7 phosphatase complex, Spo7 is a regula-

tory subunit for the function of the Nem1 catalytic subunit (31,
34, 38, 43, 65) and associates with its HAD-like domain (i.e. cat-
alytic domain) at the C-terminal region (Fig. 2) (31). The work
presented here is consistent with the notion that the LLI
sequence of Spo7 at the N-terminal region is required for com-
plex formation, and that the overall hydrophobicity of the
amino acid residues is crucial for the protein-protein interac-
tion with Nem1. It has been known that residue hydrophobicity
is a dominant factor for protein–protein interactions (66).
Thus, our findings indicate that the LLI-mediated hydrophobic
interaction is a key factor for the formation of the Nem1-Spo7
complex. This mechanism of complex formation could be fur-
ther supported by the identification of hydrophobic residues in
the Nem1 catalytic domain that directly interact with Spo7 LLI.
Obviously, the interaction of Spo7 with Nem1 would be better
understood from the molecular structural information of the
protein complexes. Our results also showed that Nem1 is
unstable without forming a complex, indicating that Spo7 is
required not only for the function of the catalytic subunit but
also for its protein stability. The effect of complex formation on
the stability of the catalytic subunit is conserved, as shown by
the instability of human CTDNEP1 (catalytic subunit, also
called Dullard) in the absence of complex formation with
NEP1-R1 (regulatory subunit, also called TMEM188) (65, 67).
The orthologous components of the yeast Nem1-Spo7/Pah1

phosphatase cascade in higher eukaryotes consist of the
CTDNEP1–NEP1-R1 complex (65, 67) and lipin PA phospha-
tase (10, 68–70). Like yeast Pah1, mammalian lipin is controlled
for its localization and PA phosphatase activity (71–74) by
phosphorylation (75–81) and dephosphorylation (65, 67, 82).

Figure 5. Electrophoretic mobility of Pah1 from spo7D cells expressing
Spo7with LLI mutations. The spo7Dmutant (GHY67) was transformed with
pGH443 and its derivatives for expression of the WT and mutant forms of
Spo7-Myc. The yeast transformants were grown at 30 °C in SC-Leumedium to
the mid-logarithmic phase. Cell extracts were prepared and subjected to
SDS-PAGE (40 mg protein) using an 8% polyacrylamide gel. A, the proteins
resolved in the polyacrylamide gel were transferred to a PVDF membrane
and probed with anti-Pah1 antibody. The positions of Pah1 and molecular
mass standards are indicated. The white dashed line is a guide to show the
range in the electrophoretic mobility of Pah1 from the spo7D cells and those
expressing WT Spo7. B, the signal intensities of Pah1 along its migration in
the region between the dashed white lines in panel A were measured using
the line graph function of ImageQuant software. The densitogram of Pah1
from the expression of mutant Spo7 (black line) was compared with those
from the presence (green line) and absence (red line) of WT Spo7. The vector
control and WT lines are included with each mutant protein for comparison.
The data shown are representative of three separate experiments.

Figure 6. TAG and phospholipid levels of spo7D cells expressing Spo7
with LLI mutations. The spo7D mutant (GHY68) was transformed with
pGH448 and its derivatives for expression of theWT andmutant forms of Spo7-
Myc. The transformants were grown at 30 °C to stationary phase in SC-Leu me-
dium containing [2-14C]acetate (1 mCi/ml). Lipids were extracted from the radio-
labeled cells, separated by TLC, subjected to phosphorimaging, and quantified
by ImageQuant analysis. The levels of TAG and phospholipids (PL) were normal-
ized to total chloroform-soluble lipids. The data are means 6 S.D. (error bars)
from three separate experiments. The individual data points are also shown.
*, p, 0.05 versus TAG ofWT. #, p, 0.05 versus phospholipid ofWT.
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In addition, the loss of lipin PA phosphatase is responsible for a
variety of lipid-based metabolic disorders. Lipin 1 deficiency in
mice and humans causes rhabdomyolysis (83, 84), and its defi-
ciency in mice is also characterized by hepatic steatosis during
the neonatal period, lipodystrophy, insulin resistance, and pe-
ripheral neuropathy (68, 85). The polymorphism of human
LPIN1 is associated with insulin resistance and the metabolic
syndrome (86). The deficiency of lipin 2 in humans results in
chronic recurrent multifocal osteomyelitis and congenital dys-

erythropoietic anemia (87, 88), whereas the specific polymor-
phisms of human LPIN2 are associated with type 2 diabetes
(89). In mouse small intestine, lipin 2 and lipin 3 deficiencies
disrupt phospholipid homeostasis, impairing lipoprotein bio-
genesis and secretion (90). In mice, the loss of CTDNEP1
causes hemorrhagic ovarian cysts with the accumulation of red
blood cells in follicles, leading to infertility (91). Unlike
CTDNEP1, NEP1-R1 is not yet known for the effects of its defi-
ciency. Nonetheless, the conservation of the phosphatase

Figure 7. Lipid droplet formation of cells defective in the Nem1-Spo7/Pah1 phosphatase cascade and of spo7D cells expressing Spo7with LLI muta-
tions. A, WT, pah1D, nem1D, and spo7D cells were grown at 30 °C in SCmedium to stationary phase and stained with BODIPY 493/503. B, spo7D (GHY68) trans-
formants expressing the indicated SPO7 allele (pGH443 and its derivatives) were grown and stained as in panel A, except that SC-Leu medium was used for
plasmid selection. The stained lipid droplets were visualized by fluorescence microscopy, and the number of lipid droplets was counted from�4 fields of view
(�200 cells). A, upper, the images shown are representative of multiple fields of view. DIC, differential interference contrast.White bar, 2 mm. A, lower, the data
shown are averages from three experiments6 S.D. (error bars). The individual data points are also shown. *, p, 0.05 versus cells expressing the WT control. B,
the data are presented by the box plot. The black andwhite lines are the median andmean values, respectively, and thewhite circles are the outlier data points
of the 5th and 95th percentiles.

Figure 8. Nuclear/ER morphology of cells defective in the Nem1-Spo7/Pah1 phosphatase cascade and of spo7D cells expressing Spo7 with
LLI mutations. A, WT, pah1D, nem1D, and spo7D cells harboring YCplac111-SEC63-GFPwere grown at 30 °C in SC-Leu medium to logarithmic phase, and the
fluorescence signal of the GFP-tagged ERmarker Sec63 was visualized by fluorescence microscopy. B, spo7D (GHY68) transformants harboring pRS413-SEC63-
GFP (pGH449) and the indicated SPO7 allele (pGH443 and its derivatives) were grown and examined as in panel A, except that SC-His-Leu medium was used
for plasmid selection. The percentage of cells with aberrant nuclear/ER morphology (misshaped versus round nuclei) was determined from �4 fields of view
(�200 cells). A, upper, the images shown are representative of multiple fields of view. DIC, differential interference contrast.White bar, 2 mm. A, lower, and B,
the data shown are averages from three experiments6 S.D. (error bars). The individual data points are also shown. *, p, 0.05 versus cells expressing the WT
control.
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cascade indicates that an important avenue of inquiry is to
understand how NEP1-R1 interacts with CTDNEP1 for the
regulation of lipin activity.
Spo7 is conserved in eukaryotes from fungi to humans (65)

by containing two transmembrane-spanning domains (TM1
and TM2) and three homology regions (CR1, CR2, and CR3)
(Fig. 2). Whereas the LLI sequence contained within CR1 is
conserved in fungi, the two amino acid residues following the
first conserved leucine vary in higher eukaryotes (65). More-
over, the second amino acid in the sequence of the worm Cae-
norhabditis elegans (LKF), the fly Drosophila melanogaster
(LKA), and the human Homosapiens (LKA) is the charged
amino acid lysine. Thus, based on the data from yeast Spo7, its
orthologs containing the lysine residue following the conserved
leucine residue are likely to have a weak interaction with the
Nem1 orthologs in those organisms.
Compared with CR1 located at the N-terminal region, CR2

and CR3 are located at the C-terminal region. The N-terminal
CR1 and the C-terminal CR2/CR3, which are outside the trans-
membrane regions, are both oriented to the cytosol. The
requirement of Spo7 as a regulatory subunit for the catalytic
function of Nem1 is thought to be in the recruitment of the
substrate. This function of Spo7 requires a region interacting
with Pah1, which is separate from a region required to form a
complex with Nem1. The LLI sequence of Spo7 located in the
N-terminal CR1 is required to form a complex with Nem1.
Thus, it is possible that CR2 and CR3 are involved in the recog-
nition of Pah1. In this regard, work is currently in progress to
assess the role of CR2 and CR3 in the interaction with Pah1.

Experimental procedures

Materials

Avanti Polar Lipids was the source of lipid standards. Bio-
Rad supplied the molecular mass protein standards and

Figure 9. Vacuole morphology of cells defective in the Nem1-Spo7/Pah1 phosphatase cascade and of spo7D cells expressing Spo7 with LLI muta-
tions. WT, pah1D, nem1D, and spo7D mutant cells were grown at 30 °C in SC medium to late-logarithmic phase, stained with FM4-64, and examined for
vacuole staining by fluorescence microscopy. B, spo7D (GHY68) transformants expressing the indicated SPO7 allele (pGH443 and its derivatives) were grown
and stained as in panel A, except that SC-Leu medium was used for plasmid selection. The percentage of cells defective in vacuole fusion (e.g. fragmented
vacuoles) was determined from�4 fields of view (�200 cells). A, upper, the images shown are representative of multiple fields of view.DIC, differential interfer-
ence contrast. White bar, 2 mm. A, lower, and B, the data shown are averages from three experiments 6 S.D. (error bars). The individual data points are also
shown. *, p, 0.05 versus cells expressing theWT control.

Figure 10. Glycerol utilization of cells defective in the Nem1-Spo7/Pah1
phosphatase cascade and of spo7D cells expressing Spo7 with LLI muta-
tions. A, WT, pah1D, nem1D, and spo7D mutant cells were grown at 30 °C in
YPD to saturation, serially diluted (10-fold), and spotted onto agar plates con-
taining 2% glucose or 3% glycerol. B, spo7D (GHY67) transformants express-
ing the indicated SPO7 allele (pGH443 and its derivatives) were grown in SC-
Leu medium and treated as in panel A. Growth on glucose and glycerol was
scored after 3 and 6 days, respectively, of incubation at 30 °C. The data are
representative of three independent experiments.
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reagents for electrophoresis, immunoblotting, and protein
determination. DNA size standards were from Invitrogen. Car-
rier DNA for yeast transformation was from Clontech. Growth
media were from Difco Laboratories. GE Healthcare was the
source of IgG-Sepharose, polyvinylidene difluoride (PVDF)mem-
brane, and the enhanced chemifluorescence Western blotting
detection kit. FM 4-64 was purchased from Molecular Probes,
Inc. Millipore-Sigma was the supplier of ampicillin, BSA, 2-mer-
captoethanol, PCR primers, nucleotides, Ponceau S stain, Triton
X-100, protease and phosphatase inhibitors, rabbit anti-protein A
antibody (product P3775, lot 025K4777), rabbit anti-myc anti-
body (product no. SAB4301136, lot no. 802535536), and silica gel
60 TLC plates. Enzyme reagents for DNAmanipulations and the
Q5 site-directed mutagenesis kit were obtained from New Eng-
land Biolabs. Radiochemicals were from Perkin-Elmer Life Scien-
ces, and scintillation-counting supplies were fromNational Diag-
nostics. Qiagen was the source of plasmid DNA purification
kits. Thermo Scientific was the source of alkaline phosphatase-
conjugated goat anti-rabbit IgG antibody (product 31340, lot
NJ178812) and BODIPY 493/503. Anti-Nem1 (40), anti-Spo7
(40), and anti-Pah1 (13) antibodies were previously generated in
New Zealand White rabbits. All other chemicals were reagent
grade.

Strains, plasmids, and DNA manipulations

The strains and plasmids used in this work are listed in Table
1. Escherichia coli strain DH5a was used for plasmid mainte-
nance and amplification. S. cerevisiae strains GHY67 (40) and
GHY68 (40), which are spo7D mutants with chromosomal
NEM1 and NEM1-PtA, respectively, were used for the expres-
sion of plasmid-borne SPO7 and its mutant derivatives. Plasmid
pGH443 (40), which is a derivative of the E. coli/yeast shuttle
vector pRS415 (92), directs the low-copy-number expression of
SPO7 in S. cerevisiae. Plasmid pGH447 was derived from
pGH443 by introducing a BamHI site before the stop codon of
SPO7. pGH448 was constructed from pGH447 by inserting a
126-bp BamHI fragment for the 33Myc tag that was released
from plasmid pRS314-SPO7-Myc (31). The derivatives of plas-
mids pGH443 and pGH448 with SPO7 mutations were con-
structed by the Q5 site-directed mutagenesis kit with appro-
priate primers designed using the NEBaseChanger online
software. pGH449 was constructed by ligation of the SmaI/SacI-
digested pRS413 (92) with the SEC63-GFP DNA that was
released from YCplac33-SEC63-GFP (93) by digestion with Hin-
dIII, treatment with Klenow fragment, and digestion with SacI.
Standard methods were used for the isolation of chromosomal
and plasmid DNA, for the digestion and ligation of DNA, and for
the PCR amplification of DNA (94–96). Plasmid transformations
of E. coli (95) and yeast (97) were performed as described previ-
ously. All genemutations were confirmed byDNA sequencing.

Growth conditions

Bacterial cells were grown at 37 °C in lysogeny broth medium
(1% tryptone, 0.5% yeast extract, 1%NaCl, pH 7.4). E. coli trans-
formants containing plasmids were selected by antibiotic (e.g.
100 mg/ml ampicillin) resistance. Standard methods were used
for culturing yeast (94, 95). Yeast cells were routinely grown at

30 °C in rich or synthetic complete medium, and those contain-
ing plasmids were maintained in synthetic dropout medium.
Unless otherwise indicated, 2% glucose was included as a car-
bon source in growth medium. Solid media for the growth of E.
coli and yeast contained agar at a concentration of 1.5 and 2%,
respectively. For the measurement of growth on solid me-
dium, serially diluted (10-fold) cultures were spotted onto
agar medium, and cell growth was scored after incubation
for 3 days at 30 or 37 °C (for temperature sensitivity).
Growth on agar medium containing glycerol as the carbon
source was scored after incubation for 6 days. Cell density in
liquid cultures was estimated spectrophotometrically by meas-
uring absorbance at 600 nm.

Preparation of cell extracts

All steps to prepare cell extracts were performed at 4 °C.
Yeast cultures were harvested by centrifugation at 1,5003 g for
5 min. The cells were washed with water and resuspended in
lysis buffer (50 mM Tris-HCl [pH 7.5], 0.3 M sucrose, 10 mM 2-
mercaptoethanol) containing protease inhibitors (0.5 mM

phenylmethylsulfonyl fluoride, 1 mM benzamidine, 5 mg/ml
aprotinin, 5 mg/ml leupeptin, and 5 mg/ml pepstatin) and phos-
phatase inhibitors (2 mM imidazole, 1 mM b-glycerophosphate,
1 mM sodium pyrophosphate, 1 mM sodium fluoride, and 1 mM

sodium orthovanadate). The suspended cells were mixed with
glass beads (0.5-mm diameter) and then disrupted by five
repeats of a 1-min burst and 2-min cooling using a BioSpec
Products Mini-Beadbeater-16 (98). The disrupted cells were
centrifuged at 1,5003 g for 10 min to separate cell extracts (su-
pernatant) from unbroken cells and cell debris (pellet). The
protein concentration of the cell extracts was determined by
themethod of Bradford (99) using BSA as a standard.

Isolation of the Nem1-Spo7 complex

The protein A-tagged Nem1-Spo7 complex was isolated
from cell extracts (2 mg protein) by incubation overnight with
IgG-Sepharose (10%, w/v, slurry). The complex was collected
by centrifugation at 1,500 3 g for 30 s and washed three times
with a modified radioimmune precipitation lysis buffer (50 mM

Tris-HCl [pH 8.0], 150 mM NaCl, 1% Triton X-100, and 0.1%
SDS) containing protease (0.5 mM phenylmethanesulfonyl fluo-
ride, 1 mM benzamidine, 5 mg/ml aprotinin, 5 mg/ml leupeptin,
and 5 mg/ml pepstatin) and phosphatase (10 mM sodium fluo-
ride, 5 mM b-glycerophosphate, and 1 mM sodium vanadate)
inhibitors (100). The Nem1 and Spo7 proteins were separated
by SDS-PAGE (101) using 12% polyacrylamide gels and trans-
ferred to PVDFmembrane (102–104).

Immunoblotting

Protein transfer from SDS-polyacrylamide gels to PVDF
membranes was monitored by Ponceau S staining. The mem-
brane blots were cut; the upper and lower portions were probed
with rabbit anti-Nem1 (1 mg/ml) or rabbit anti-protein A (2 mg/
ml) antibodies and with rabbit anti-Spo7 (1 mg/ml) or rabbit
anti-Myc (1:1,000 dilution) antibodies, respectively. The immu-
noblot analysis of Pah1 from cell extracts subjected to SDS-
PAGE using 8% polyacrylamide gels was performed with rabbit
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anti-Pah1 antibody (2 mg/ml). The secondary goat anti-rabbit
IgG antibody conjugated with alkaline phosphatase was used at
a dilution of 1:5,000. Immune complexes on the PVDF mem-
brane were detected using the enhanced chemifluorescence
immunoblotting substrate. Fluorimaging, using a Storm 865
Molecular Imager (GE Healthcare), was used to acquire fluo-
rescence signals from immunoblots, and the intensities of the
images were analyzed by ImageQuant TL software (GE Health-
care). A standard curve was used to ensure that the immuno-
blot signals were in the linear range of detection.

Radiolabeling and analysis of lipids

The labeling of cellular lipids with [2-14C]acetate was per-
formed as described previously (105). Lipids were extracted
(106) from the radiolabeled cells and then separated by one-
dimensional TLC in the solvent system of hexane-diethyl
ether-acetic acid (40:10:1, v/v) (107). The resolved lipids were
visualized by phosphorimaging and quantified by ImageQuant
TL software. The identity of radiolabeled lipids was confirmed
by comparison with the migration of authentic standards
visualized by staining with iodine vapor.

Fluorescence microscopy

For the fluorescent staining of lipid droplets, yeast cells were
grown at 30 °C in synthetic medium to the stationary phase, incu-
bated for 30 min with 2 mM BODIPY 493/503, washed with PBS
(pH 7.4), and resuspended in the same buffer. For the fluorescent
labeling of nuclear/ER membrane, yeast cells transformed with
the SEC63-GFP plasmid (43) were grown at 30 °C in the selection
medium to the logarithmic phase and subjected to microscopic
analysis. For the fluorescent staining of vacuole membranes, cells
were grown at 30 °C in synthetic medium to the late-logarithmic
phase, incubated for 15min at 30 °Cwith 32mM FM4-64, washed
with yeast extract peptone dextrose, and resuspended in fresh
growth medium (108). The number of lipid droplets per cell and
the percentage of cells with aberrant nuclear/ER morphology
(misshaped versus round nuclei) or defective vacuole fusion (e.g.
fragmented vacuoles) were scored from �4 fields of view (�200
cells). The green and red fluorescence signals were examined
under a Nikon Eclipse Ni-U microscope with the EGFP/FITC/
Cy2/AlexaFluor 488 and TRITC/Cy3/TagRFP/AlexaFluor 546
filters, respectively, re-corded by the DS-Qi2 camera, and sub-
jected to imaging analysis withNIS-Elements BR software.

Analysis of data

Microsoft Excel software was used for the statistical analysis
of data. p values of,0.05 were taken as significant differences.

Data availability

All data are contained within themanuscript.
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